Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Inflammopharmacology ; 31(4): 1683-1693, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2321903

ABSTRACT

In Covid-19, variations in fasting blood glucose are considered a distinct risk element for a bad prognosis and outcome in Covid-19 patients. Tirazepatide (TZT), a dual glucagon-like peptide-1 (GLP-1)and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist may be effective in managing Covid-19-induced hyperglycemia in diabetic and non-diabetic patients. The beneficial effect of TZT in T2DM and obesity is related to direct activation of GIP and GLP-1 receptors with subsequent improvement of insulin sensitivity and reduction of body weight. TZT improves endothelial dysfunction (ED) and associated inflammatory changes through modulation of glucose homeostasis, insulin sensitivity, and pro-inflammatory biomarkers release. TZT, through activation of the GLP-1 receptor, may produce beneficial effects against Covid-19 severity since GLP-1 receptor agonists (GLP-1RAs) have anti-inflammatory and pulmoprotective implications in Covid-19. Therefore, GLP-1RAs could effectively treat severely affected Covid-19 diabetic and non-diabetic patients. Notably, using GLP-1RAs in T2DM patients prevents glucose variability, a common finding in Covid-19 patients. Therefore, GLP-1RAs like TZT could be a therapeutic strategy in T2DM patients with Covid-19 to prevent glucose variability-induced complications. In Covid-19, the inflammatory signaling pathways are highly activated, resulting in hyperinflammation. GLP-1RAs reduce inflammatory biomarkers like IL-6, CRP, and ferritin in Covid-19 patients. Therefore, GLP-1RAs like TZ may be effective in Covid-19 patients by reducing the inflammatory burden. The anti-obesogenic effect of TZT may reduce Covid-19 severity by ameliorating body weight and adiposity. Furthermore, Covid-19 may induce substantial alterations in gut microbiota. GLP-1RA preserves gut microbiota and prevents intestinal dysbiosis. Herein, TZT, like other GLP-1RA, may attenuate Covid-19-induced gut microbiota alterations and, by this mechanism, may mitigate intestinal inflammation and systemic complications in Covid-19 patients with either T2DM or obesity. As opposed to that, glucose-dependent insulinotropic polypeptide (GIP) was reduced in obese and T2DM patients. However, activation of GIP-1R by TZT in T2DM patients improves glucose homeostasis. Thus, TZT, through activation of both GIP and GLP-1, may reduce obesity-mediated inflammation. In Covid-19, GIP response to the meal is impaired, leading to postprandial hyperglycemia and abnormal glucose homeostasis. Therefore, using TZT in severely affected Covid-19 patients may prevent the development of glucose variability and hyperglycemia-induced oxidative stress. Moreover, exaggerated inflammatory disorders in Covid-19 due to the release of pro-inflammatory cytokines like IL-1ß, IL-6, and TNF-α may lead to systemic inflammation and cytokine storm development. Besides, GIP-1 inhibits expression of IL-1ß, IL-6, MCP-1, chemokines and TNF-α. Therefore, using GIP-1RA like TZT may inhibit the onset of inflammatory disorders in severely affected Covid-19 patients. In conclusion, TZT, through activation of GLP-1 and GIP receptors, may prevent SARS-CoV-2-induced hyperinflammation and glucose variability in diabetic and non-diabetic patients.

2.
Artif Cells Nanomed Biotechnol ; 51(1): 255-267, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2318862

ABSTRACT

Respiratory tract infections are a common cause of morbidity and mortality globally. The current paper aims to treat this respiratory disorder. Therefore, we elucidated the phytochemical profile of Euphorbia milii flowers and isolated chlorogenic acid (CGA) for the first time. The electrospraying technique was utilized to prepare CGA nanoparticles in polyvinyl alcohol (PVA)/PLGA polymeric matrix. Complete in vitro characterizations were performed to determine particle size, polydispersity index (PDI), zeta potential, loading efficiency (LE), scanning electron microscopy and in vitro release study. The optimum formula (F2) with a particle size (454.36 ± 36.74 nm), a surface charge (-4.56 ± 0.84 mV), % of LE (80.23 ± 5.74), an initial burst (29.46 ± 4.79) and % cumulative release (97.42 ± 4.72) were chosen for further activities. In the murine lung infection model, PVA/PLGA NPs loaded with CGA (F2) demonstrated in vivo antibacterial activity against Pseudomonas aeruginosa. Using a plaque assay, the in vitro antiviral activity was investigated. The F2 exhibited antiviral activity against coronavirus (HCoV-229E) and (Middle East respiratory syndrome coronavirus (MERS-CoV), NRCEHKU270). The IC50 of F2 against HCoV-229E and MERS-CoV was 170 ± 1.1 and 223 ± 0.88 µg/mL, respectively. The values of IC50 of F2 were significantly lower (p < .05) than that of free CGA. Therefore, the encapsulation of CGA into electrospray PVA/PLGA NPs would be a promising tool as an antimicrobial agent.


Subject(s)
Middle East Respiratory Syndrome Coronavirus , Nanoparticles , Mice , Animals , Polyvinyl Alcohol/chemistry , Antiviral Agents , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Chlorogenic Acid/pharmacology , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Lung , Nanoparticles/chemistry
3.
Pharmaceuticals (Basel, Switzerland) ; 16(2), 2023.
Article in English | EuropePMC | ID: covidwho-2250502

ABSTRACT

Diseases and infections of the respiratory tract are common global causes of morbidity and mortality. Our study attempts to elucidate a novel remedy for respiratory ailments, in addition to identifying and quantifying the metabolites of Saussurea costus root extract (SCRE) using HPLC. Then, in vitro antiviral and in vivo lung protective effects were elucidated. The in vitro antiviral potential of SCRE was analyzed via plaque assay against the low pathogenic human coronavirus (HCoV-229E) and human influenza virus (H1N1). The value of the half maximal inhibitory concentrations (IC50) of SCRE against HCoV-229E and H1N1 influenza virus were 23.21 ± 1.1 and 47.6 ± 2.3 µg/mL, respectively. SCRE showed a histological improvement, namely a decrease in inducible nitric oxide synthase (iNOS) and caspase-3 immunoexpression in in vivo cyclophosphamide (CP)-induced acute lung injury (ALI). Moreover, there was a considerable decline in microRNA-let-7a gene expression and a significant rise in heme oxygenase-1 (HO-1) gene expression, with a marked decrease in the malondialdehyde (MDA) level. Molecular docking studies revealed that the major constituents of SCRE have a good affinity for caspase-3, HO-1, and iNOS proteins. In conclusion, a traditional plant SCRE could be a promising source of novel therapeutic agents for treating and protecting respiratory tract diseases. More future investigations should be carried out to reveal its efficacy clinically.

4.
Inflammopharmacology ; 31(1): 9-19, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2251461

ABSTRACT

The causative agent of CoV disease 2019 is a new coronavirus CoV type 2, affecting the respiratory tract with severe manifestations (SARS-CoV-2). Covid-19 is mainly symptomless, with slight indications in about 85% of the affected cases. Many efforts were done to face this pandemic by testing different drugs and agents to make treatment protocols in different countries. However, the use of these proposed drugs is associated with the development of adverse events. Remarkably, the successive development of SARS-CoV-2 variants which could affect persons even they were vaccinated, prerequisite wide search to find efficient and safe agents to face SARS-CoV-2 infection. Obeticholic acid (OCA), which has anti-inflammatory effects, may efficiently treat Covid-19. Thus, the goal of this perspective study is to focus on the possible medicinal effectiveness in managing Covid-19. OCA is a powerful farnesoid X receptor (FXR) agonist possessing marked antiviral and anti-inflammatory effects. FXR is dysregulated in Covid-19 resulting in hyper-inflammation with concurrent occurrence of hypercytokinemia. Interestingly, OCA inhibits the reaction between this virus and angiotensin-converting enzyme type 2 (ACE2) receptors. FXR agonists control the expression of ACE2 and the inflammatory signaling pathways in this respiratory syndrome, which weakens the effects of Covid-19 disease and accompanied complications. Taken together, FXR agonists like OCA may reveal both direct and indirect impacts in the modulation of immune reaction in SARS-CoV-2 conditions. It is highly recommended to perform many investigations regarding different phases of the discovery of new drugs.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Peptidyl-Dipeptidase A , Anti-Inflammatory Agents
5.
Inflammopharmacology ; 30(6): 2003-2016, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2250759

ABSTRACT

Coronavirus disease 2019 (Covid-19) is a global diastrophic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Covid-19 leads to inflammatory, immunological, and oxidative changes, by which SARS-CoV-2 leads to endothelial dysfunction (ED), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and multi-organ failure (MOF). Despite evidence illustrating that some drugs and vaccines effectively manage and prevent Covid-19, complementary herbal medicines are urgently needed to control this pandemic disease. One of the most used herbal medicines is berberine (BBR), which has anti-inflammatory, antioxidant, antiviral, and immune-regulatory effects; thus, BBR may be a prospective candidate against SARS-CoV-2 infection. This review found that BBR has anti-SARS-CoV-2 effects with mitigation of associated inflammatory changes. BBR also reduces the risk of ALI/ARDS in Covid-19 patients by inhibiting the release of pro-inflammatory cytokines and inflammatory signaling pathways. In conclusion, BBR has potent anti-inflammatory, antioxidant, and antiviral effects. Therefore, it can be utilized as a possible anti-SARS-CoV-2 agent. BBR inhibits the proliferation of SARS-CoV-2 and attenuates the associated inflammatory disorders linked by the activation of inflammatory signaling pathways. Indeed, BBR can alleviate ALI/ARDS in patients with severe Covid-19. In this sense, clinical trials and prospective studies are suggested to illustrate the potential role of BBR in treating Covid-19.


Subject(s)
Berberine , COVID-19 Drug Treatment , Respiratory Distress Syndrome , Humans , SARS-CoV-2 , Berberine/pharmacology , Berberine/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Prospective Studies , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
6.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 18.
Article in English | MEDLINE | ID: covidwho-2238830

ABSTRACT

Diseases and infections of the respiratory tract are common global causes of morbidity and mortality. Our study attempts to elucidate a novel remedy for respiratory ailments, in addition to identifying and quantifying the metabolites of Saussurea costus root extract (SCRE) using HPLC. Then, in vitro antiviral and in vivo lung protective effects were elucidated. The in vitro antiviral potential of SCRE was analyzed via plaque assay against the low pathogenic human coronavirus (HCoV-229E) and human influenza virus (H1N1). The value of the half maximal inhibitory concentrations (IC50) of SCRE against HCoV-229E and H1N1 influenza virus were 23.21 ± 1.1 and 47.6 ± 2.3 µg/mL, respectively. SCRE showed a histological improvement, namely a decrease in inducible nitric oxide synthase (iNOS) and caspase-3 immunoexpression in in vivo cyclophosphamide (CP)-induced acute lung injury (ALI). Moreover, there was a considerable decline in microRNA-let-7a gene expression and a significant rise in heme oxygenase-1 (HO-1) gene expression, with a marked decrease in the malondialdehyde (MDA) level. Molecular docking studies revealed that the major constituents of SCRE have a good affinity for caspase-3, HO-1, and iNOS proteins. In conclusion, a traditional plant SCRE could be a promising source of novel therapeutic agents for treating and protecting respiratory tract diseases. More future investigations should be carried out to reveal its efficacy clinically.

7.
Inflammopharmacology ; 30(6): 1935-1954, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2014260

ABSTRACT

The pandemic spread of coronavirus (COVID-19) has been reported first at the end of 2019. It continues disturbing various human aspects with multiple pandemic waves showing more fatal novel variants. Now Egypt faces the sixth wave of the pandemic with controlled governmental measures. COVID-19 is an infectious respiratory disease-causing mild to moderate illness that can be progressed into life-threatening complications based on patients- and variant type-related factors. The symptoms vary from dry cough, fever to difficulty in breathing that required urgent hospitalization. Most countries have authorized their national protocols for managing manifested symptoms and thus lowering the rate of patients' hospitalization and boosting the healthcare systems. These protocols are still in use even with the development and approval of several vaccines. These protocols were instructed to aid home isolation, bed rest, dietary supplements, and additionally the administration of antipyretic, steroids, and antiviral drugs. The current review aimed to highlight the administered protocols in the Middle East, namely in Egypt and the Kingdom of Saudi Arabia demonstrating how these protocols have shown potential effectiveness in treating patients and saving many soles.


Subject(s)
COVID-19 Drug Treatment , Humans , Pharmaceutical Preparations , Pandemics/prevention & control , Antiviral Agents/therapeutic use , Middle East/epidemiology
8.
Inflammopharmacology ; 30(5): 1493-1501, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1971761

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2) has been identified as the source of a world coronavirus pandemic in 2019. Covid-19 is considered a main respiratory disease-causing viral pneumonia and, in severe cases, leads to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Although, extrapulmonary manifestations of Covid-19 like neurological, cardiovascular, and gastrointestinal have been confirmed. Exaggerated immune response and release of a high amount of pro-inflammatory cytokines may progress, causing a cytokine storm. Consequently, direct and indirect effects of SARS-CoV-2 infection can evolve into systemic complications due to the progression of hyper inflammation, oxidative stress and dysregulation of the renin-angiotensin system (RAS). Therefore, anti-inflammatory and antioxidant agents could be efficient in alleviating these disorders. Ursolic acid has anti-inflammatory, antioxidant, and antiviral effects; it reduces the release of pro-inflammatory cytokines, improves anti-inflammatory cytokines, and inhibits the production of reactive oxygen species (ROS). In virtue of its anti-inflammatory and antioxidant effects, ursolic acid may minimize SARS-CoV-2 infection-induced complications. Also, by regulating RAS and inflammatory signaling pathways, ursolic acid might effectively reduce the development of ALI in ARDS in Covid-19. In this state, this perspective discusses how ursolic acid can mitigate hyper inflammation and oxidative stress in Covid-19.


Subject(s)
Acute Lung Injury , COVID-19 Drug Treatment , Respiratory Distress Syndrome , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiviral Agents/therapeutic use , Cytokines , Humans , Inflammation/drug therapy , Oleanolic Acid/analogs & derivatives , Reactive Oxygen Species , SARS-CoV-2
9.
Antibiotics (Basel) ; 10(12)2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1603447

ABSTRACT

Lung diseases such as asthma, chronic obstructive pulmonary diseases, and pneumonia are causing many global health problems. The COVID-19 pandemic has directed the scientific community's attention toward performing more research to explore novel therapeutic drugs for pulmonary diseases. Herein, gas chromatography coupled with mass spectrometry tentatively identified 44 compounds in frankincense ethanol extract (FEE). We investigated the antibacterial and antibiofilm effects of FEE against Pseudomonas aeruginosa bacteria, isolated from patients with respiratory infections. In addition, its in vitro immunomodulatory activity was explored by the detection of the gene expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide synthase (iNOS), cycloxygenase-2 (COX-2), and nuclear factor kappa-B (NF-κB) in lipopolysaccharide (LPS)-induced peripheral blood mononuclear cells (PBMC). In addition, its anticancer activity against the A549 lung cancer cell line and human skin fibroblast (HSF) normal cell line was studied. Moreover, the in vivo lung protective potential of FEE was explored histologically and immunohistochemically in mice using a benzo(a)pyrene induced lung damage model. FEE exhibited antibacterial and antibiofilm activities besides the significant inhibition of gene expression of TNFα, IL-6, and NF-κB. FEE also exerted a cytotoxic effect against A549 cell line. Histological and immunohistochemical investigations with morphometric analysis of the mean area percentage and color intensity of positive TNF-α, COX-2, and NF-κB and Bcl-2 reactions revealed the lung protective activity of FEE. This study outlined the promising therapeutic activity of oleoresin obtained from B. dalzielii in the treatment of different pulmonary diseases.

10.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 16.
Article in English | MEDLINE | ID: covidwho-1580537

ABSTRACT

The global emergence of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused the entire world's attention toward searching for a potential remedy for this disease. Thus, we investigated the antiviral activity of Agrimonia pilosa ethanol extract (APEE) against SARS-CoV-2 and it exhibited a potent antiviral activity with IC50 of 1.1 ± 0.03 µg/mL. Its mechanism of action was elucidated, and it exhibited a virucidal activity and an inhibition of viral adsorption. Moreover, it presented an immunomodulatory activity as it decreased the upregulation of gene expression of COX-2, iNOS, IL-6, TNF-α, and NF-κB in lipopolysaccharide (LPS)-induced peripheral blood mononuclear cells. A comprehensive analysis of the phytochemical fingerprint of APEE was conducted using LC-ESI-MS/MS technique for the first time. We detected 81 compounds and most of them belong to the flavonoid and coumarin classes. Interestingly, isoflavonoids, procyanidins, and anthocyanins were detected for the first time in A. pilosa. Moreover, the antioxidant activity was evidenced in DPPH (IC50 62.80 µg/mL) and ABTS (201.49 mg Trolox equivalents (TE)/mg) radical scavenging, FRAP (60.84 mg TE/mg), and ORAC (306.54 mg TE/g) assays. Furthermore, the protective effect of APEE was investigated in Lipopolysaccharides (LPS)-induced acute lung injury (ALI) in mice. Lung W/D ratio, serum IL-6, IL-18, IL-1ß, HO-1, Caspase-1, caspase-3, TLR-4 expression, TAC, NO, MPO activity, and histopathological examination of lung tissues were assessed. APEE induced a marked downregulation in all inflammation, oxidative stress, apoptosis markers, and TLR-4 expression. In addition, it alleviated all histopathological abnormalities confirming the beneficial effects of APEE in ALI. Therefore, APEE could be a potential source for therapeutic compounds that could be investigated, in future preclinical and clinical trials, in the treatment of patients with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL